标题:
MATLAB
[打印本页]
作者:
jetzt
时间:
2004-2-3 04:08
标题:
MATLAB
1. MATLAB的概况
MATLAB是矩阵实验室(Matrix Laboratory)之意。除具备卓越的数值计算能力外,它还提供了专业水平的符号计算,文字处理,可视化建模仿真和实时控制等功能。
MATLAB的基本数据单位是矩阵,它的指令表达式与数学,工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完相同的事情简捷得多.
当前流行的MATLAB 5.3/Simulink 3.0包括拥有数百个内部函数的主包和三十几种工具包(Toolbox).工具包又可以分为功能性工具包和学科工具包.功能工具包用来扩充MATLAB的符号计算,可视化建模仿真,文字处理及实时控制等功能.学科工具包是专业性比较强的工具包,控制工具包,信号处理工具包,通信工具包等都属于此类.
开放性使MATLAB广受用户欢迎.除内部函数外,所有MATLAB主包文件和各种工具包都是可读可修改的文件,用户通过对源程序的修改或加入自己编写程序构造新的专用工具包.
2. MATLAB产生的历史背景
在70年代中期,Cleve Moler博士和其同事在美国国家科学基金的资助下开发了调用EISPACK和LINPACK的FORTRAN子程序库.EISPACK是特征值求解的FOETRAN程序库,LINPACK是解线性方程的程序库.在当时,这两个程序库代表矩阵运算的最高水平.
到70年代后期,身为美国New Mexico大学计算机系系主任的Cleve Moler,在给学生讲授线性代数课程时,想教学生使用EISPACK和LINPACK程序库,但他发现学生用FORTRAN编写接口程序很费时间,于是他开始自己动手,利用业余时间为学生编写EISPACK和LINPACK的接口程序.Cleve Moler给这个接口程序取名为MATLAB,该名为矩阵(matrix)和实验室(labotatory)两个英文单词的前三个字母的组合.在以后的数年里,MATLAB在多所大学里作为教学辅助软件使用,并作为面向大众的免费软件广为流传.
1983年春天,Cleve Moler到Standford大学讲学,MATLAB深深地吸引了工程师John Little.John Little敏锐地觉察到MATLAB在工程领域的广阔前景.同年,他和Cleve Moler,Steve Bangert一起,用C语言开发了第二代专业版.这一代的MATLAB语言同时具备了数值计算和数据图示化的功能.
1984年,Cleve Moler和John Little成立了Math Works公司,正式把MATLAB推向市场,并继续进行MATLAB的研究和开发.
在当今30多个数学类科技应用软件中,就软件数学处理的原始内核而言,可分为两大类.一类是数值计算型软件,如MATLAB,Xmath,Gauss等,这类软件长于数值计算,对处理大批数据效率高;另一类是数学分析型软件,Mathematica,Maple等,这类软件以符号计算见长,能给出解析解和任意精确解,其缺点是处理大量数据时效率较低.MathWorks公司顺应多功能需求之潮流,在其卓越数值计算和图示能力的基础上,又率先在专业水平上开拓了其符号计算,文字处理,可视化建模和实时控制能力,开发了适合多学科,多部门要求的新一代科技应用软件MATLAB.经过多年的国际竞争,MATLAB以经占据了数值软件市场的主导地位.
在MATLAB进入市场前,国际上的许多软件包都是直接以FORTRANC语言等编程语言开发的。这种软件的缺点是使用面窄,接口简陋,程序结构不开放以及没有标准的基库,很难适应各学科的最新发展,因而很难推广。MATLAB的出现,为各国科学家开发学科软件提供了新的基础。在MATLAB问世不久的80年代中期,原先控制领域里的一些软件包纷纷被淘汰或在MATLAB上重建。
MathWorks公司1993年推出了MATLAB 4。0版,1995年推出4。2C版(for win3。X)1997年推出5。0版。1999年推出5。3版。MATLAB 5。X较MATLAB 4。X无论是界面还是内容都有长足的进展,其帮助信息采用超文本格式和PDF格式,在Netscape 3。0或IE 4。0及以上版本,Acrobat Reader中可以方便地浏览。
时至今日,经过MathWorks公司的不断完善,MATLAB已经发展成为适合多学科,多种工作平台的功能强大大大型软件。在国外,MATLAB已经经受了多年考验。在欧美等高校,MATLAB已经成为线性代数,自动控制理论,数理统计,数字信号处理,时间序列分析,动态系统仿真等高级课程的基本教学工具;成为攻读学位的大学生,硕士生,博士生必须掌握的基本技能。在设计研究单位和工业部门,MATLAB被广泛用于科学研究和解决各种具体问题。在国内,特别是工程界,MATLAB一定会盛行起来。可以说,无论你从事工程方面的哪个学科,都能在MATLAB里找到合适的功能。
2.MATLAB的语言特点
一种语言之所以能如此迅速地普及,显示出如此旺盛的生命力,是由于它有着不同于其他语言的特点,正如同FORTRAN和C等高级语言使人们摆脱了需要直接对计算机硬件资源进行操作一样,被称作为第四代计算机语言的MATLAB,利用其丰富的函数资源,使编程人员从繁琐的程序代码中解放出来。MATLAB最突出的特点就是简洁。MATLAB用更直观的,符合人们思维习惯的代码,代替了C和 FORTRAN语言的冗长代码。MATLAB给用户带来的是最直观,最简洁的程序开发环境。以下简单介绍一下MATLAB的主要特点。
1)。语言简洁紧凑,使用方便灵活,库函数极其丰富。MATLAB程序书写形式自由,利用起丰富的库函数避开繁杂的子程序编程任务,压缩了一切不必要的编程工作。由于库函数都由本领域的专家编写,用户不必担心函数的可靠性。可以说,用MATLAB进行科技开发是站在专家的肩膀上。
具有FORTRAN和C等高级语言知识的读者可能已经注意到,如果用FORTRAN或C语言去编写程序,尤其当涉及矩阵运算和画图时,编程会很麻烦。例如,如果用户想求解一个线性代数方程,就得编写一个程序块读入数据,然后再使用一种求解线性方程的算法(例如追赶法)编写一个程序块来求解方程,最后再输出计算结果。在求解过程中,最麻烦的要算第二部分。解线性方程的麻烦在于要对矩阵的元素作循环,选择稳定的算法以及代码的调试动不容易。即使有部分源代码,用户也会感到麻烦,且不能保证运算的稳定性。解线性方程的程序用FORTRAN和C这样的高级语言编写,至少需要四百多行,调试这种几百行的计算程序可以说很困难。以下用MATLAB编写以上两个小程序的具体过程。
MATLAB求解下列方程,并求解矩阵A的特征值。
Ax=b,其中:
A= 32 13 45 67
23 79 85 12
43 23 54 65
98 34 71 35
b= 1
2
3
4
解为:x=A;设A的特征值组成的向量e,e=eig(A)。
可见,MATLAB的程序极其简短。更为难能可贵的是,MATLAB甚至具有一定的智能水平,比如上面的解方程,MATLAB会根据矩阵的特性选择方程的求解方法,所以用户根本不用怀疑MATLAB的准确性。
2)运算符丰富。由于MATLAB是用C语言编写的,MATLAB提供了和C语言几乎一样多的运算符,灵活使用MATLAB的运算符将使程序变得极为简短。
3)MATLAB既具有结构化的控制语句(如for循环,while循环,break语句和if语句),又有面向对象编程的特性。
4)程序限制不严格,程序设计自由度大。例如,在MATLAB里,用户无需对矩阵预定义就可使用。
5)程序的可移植性很好,基本上不做修改就可以在各种型号的计算机和操作系统上运行。
6)MATLAB的图形功能强大。在FORTRAN和C语言里,绘图都很不容易,但在MATLAB里,数据的可视化非常简单。MATLAB还具有较强的编辑图形界面的能力。
7)MATLAB的缺点是,它和其他高级程序相比,程序的执行速度较慢。由于MATLAB的程序不用编译等预处理,也不生成可执行文件,程序为解释执行,所以速度较慢。
8)功能强大的工具箱是MATLAB的另一特色。MATLAB包含两个部分:核心部分和各种可选的工具箱。核心部分中有数百个核心内部函数。其工具箱又分为两类:功能性工具箱和学科性工具箱。功能性工具箱主要用来扩充其符号计算功能,图示建模仿真功能,文字处理功能以及与硬件实时交互功能。功能性工具箱用于多种学科。而学科性工具箱是专业性比较强的,如control,toolbox,signl proceessing toolbox,commumnication toolbox等。这些工具箱都是由该领域内学术水平很高的专家编写的,所以用户无需编写自己学科范围内的基础程序,而直接进行高,精,尖的研究。
9)源程序的开放性。开放性也许是MATLAB最受人们欢迎的特点。除内部函数以外,所有MATLAB的核心文件和工具箱文件都是可读可改的源文件,用户可通过对源文件的修改以及加入自己的文件构成新的工具箱。
作者:
jetzt
时间:
2004-2-3 04:10
标题:
MATLAB入门教程
1.MATLAB的基本知识
1-1、基本运算与函数
在MATLAB下进行基本数学运算,只需将运算式直接打入提示号(>>)之後,并按入Enter键即可。例如:
>> (5*2+1.3-0.8)*10/25
ans =4.2000
MATLAB会将运算结果直接存入一变数ans,代表MATLAB运算後的答案(Answer)并显示其数值於萤幕上。
小提示: ">>"是MATLAB的提示符号(Prompt),但在PC中文视窗系统下,由於编码方式不同,此提示符号常会消失不见,但这并不会影响到MATLAB的运算结果。
我们也可将上述运算式的结果设定给另一个变数x:
x = (5*2+1.3-0.8)*10^2/25
x = 42
此时MATLAB会直接显示x的值。由上例可知,MATLAB认识所有一般常用到的加(+)、减(-)、乘(*)、除(/)的数学运算符号,以及幂次运算(^)。
小提示: MATLAB将所有变数均存成double的形式,所以不需经过变数宣告(Variable declaration)。MATLAB同时也会自动进行记忆体的使用和回收,而不必像C语言,必须由使用者一一指定.这些功能使的MATLAB易学易用,使用者可专心致力於撰写程式,而不必被软体枝节问题所干扰。
若不想让MATLAB每次都显示运算结果,只需在运算式最後加上分号(;)即可,如下例:
y = sin(10)*exp(-0.3*4^2);
若要显示变数y的值,直接键入y即可:
>>y
y =-0.0045
在上例中,sin是正弦函数,exp是指数函数,这些都是MATLAB常用到的数学函数。
下表即为MATLAB常用的基本数学函数及三角函数:
小整理:MATLAB常用的基本数学函数
abs(x):纯量的绝对值或向量的长度
angle(z):复 数z的相角(Phase angle)
sqrt(x):开平方
real(z):复数z的实部
imag(z):复数z的虚 部
conj(z):复数z的共轭复数
round(x):四舍五入至最近整数
fix(x):无论正负,舍去小数至最近整数
floor(x):地板函数,即舍去正小数至最近整数
ceil(x):天花板函数,即加入正小数至最近整数
rat(x):将实数x化为分数表示
rats(x):将实数x化为多项分数展开
sign(x):符号函数 (Signum function)。
当x<0时,sign(x)=-1;
当x=0时,sign(x)=0;
当x>0时,sign(x)=1。
> 小整理:MATLAB常用的三角函数
sin(x):正弦函数
cos(x):馀弦函数
tan(x):正切函数
asin(x):反正弦函数
acos(x):反馀弦函数
atan(x):反正切函数
atan2(x,y):四象限的反正切函数
sinh(x):超越正弦函数
cosh(x):超越馀弦函数
tanh(x):超越正切函数
asinh(x):反超越正弦函数
acosh(x):反超越馀弦函数
atanh(x):反超越正切函数
变数也可用来存放向量或矩阵,并进行各种运算,如下例的列向量(Row vector)运算:
x = [1 3 5 2];
y = 2*x+1
y = 3 7 11 5
小提示:变数命名的规则
1.第一个字母必须是英文字母 2.字母间不可留空格 3.最多只能有19个字母,MATLAB会忽略多馀字母
我们可以随意更改、增加或删除向量的元素:
y(3) = 2 % 更改第三个元素
y =3 7 2 5
y(6) = 10 % 加入第六个元素
y = 3 7 2 5 0 10
y(4) = [] % 删除第四个元素,
y = 3 7 2 0 10
在上例中,MATLAB会忽略所有在百分比符号(%)之後的文字,因此百分比之後的文字均可视为程式的注解(Comments)。MATLAB亦可取出向量的一个元素或一部份来做运算:
x(2)*3+y(4) % 取出x的第二个元素和y的第四个元素来做运算
ans = 9
y(2:4)-1 % 取出y的第二至第四个元素来做运算
ans = 6 1 -1
在上例中,2:4代表一个由2、3、4组成的向量
若对MATLAB函数用法有疑问,可随时使用help来寻求线上支援(on-line help):help linspace
小整理:MATLAB的查询命令
help:用来查询已知命令的用法。例如已知inv是用来计算反矩阵,键入help inv即可得知有关inv命令的用法。(键入help help则显示help的用法,请试看看!) lookfor:用来寻找未知的命令。例如要寻找计算反矩阵的命令,可键入 lookfor inverse,MATLAB即会列出所有和关键字inverse相关的指令。找到所需的命令後 ,即可用help进一步找出其用法。(lookfor事实上是对所有在搜寻路径下的M档案进行关键字对第一注解行的比对,详见後叙。)
将列向量转置(Transpose)後,即可得到行向量(Column vector):
z = x'
z = 4.0000
5.2000
6.4000
7.6000
8.8000
10.0000
不论是行向量或列向量,我们均可用相同的函数找出其元素个数、最大值、最小值等:
length(z) % z的元素个数
ans = 6
max(z) % z的最大值
ans = 10
min(z) % z的最小值
ans = 4
小整理:适用於向量的常用函数有:
min(x): 向量x的元素的最小值
max(x): 向量x的元素的最大值
mean(x): 向量x的元素的平均值
median(x): 向量x的元素的中位数
std(x): 向量x的元素的标准差
diff(x): 向量x的相邻元素的差
sort(x): 对向量x的元素进行排序(Sorting)
length(x): 向量x的元素个数
norm(x): 向量x的欧氏(Euclidean)长度
sum(x): 向量x的元素总和
prod(x): 向量x的元素总乘积
cumsum(x): 向量x的累计元素总和
cumprod(x): 向量x的累计元素总乘积
dot(x, y): 向量x和y的内 积
cross(x, y): 向量x和y的外积 (大部份的向量函数也可适用於矩阵,详见下述。)
若要输入矩阵,则必须在每一列结尾加上分号(;),如下例:
A = [1 2 3 4; 5 6 7 8; 9 10 11 12];
A =
1 2 3 4
5 6 7 8
9 10 11 12
同样地,我们可以对矩阵进行各种处理:
A(2,3) = 5 % 改变位於第二列,第三行的元素值
A =
1 2 3 4
5 6 5 8
9 10 11 12
B = A(2,1:3) % 取出部份矩阵B
B = 5 6 5
A = [A B'] % 将B转置後以行向量并入A
A =
1 2 3 4 5
5 6 5 8 6
9 10 11 12 5
A(:, 2) = [] % 删除第二行(:代表所有列)
A =
1 3 4 5
5 5 8 6
9 11 12 5
A = [A; 4 3 2 1] % 加入第四列
A =
1 3 4 5
5 5 8 6
9 11 12 5
4 3 2 1
A([1 4], :) = [] % 删除第一和第四列(:代表所有行)
A =
5 5 8 6
9 11 12 5
这几种矩阵处理的方式可以相互叠代运用,产生各种意想不到的效果,就看各位的巧思和创意。
小提示:在MATLAB的内部资料结构中,每一个矩阵都是一个以行为主(Column-oriented )的阵列(Array)因此对於矩阵元素的存取,我们可用一维或二维的索引(Index)来定址。举例来说,在上述矩阵A中,位於第二列、第三行的元素可写为A(2,3) (二维索引)或A(6)(一维索引,即将所有直行进行堆叠後的第六个元素)。
此外,若要重新安排矩阵的形状,可用reshape命令:
B = reshape(A, 4, 2) % 4是新矩阵的列数,2是新矩阵的行数
B =
5 8
9 12
5 6
11 5
小提示: A(:)就是将矩阵A每一列堆叠起来,成为一个行向量,而这也是MATLAB变数的内部储存方式。以前例而言,reshape(A, 8, 1)和A(:)同样都会产生一个8x1的矩阵。
MATLAB可在同时执行数个命令,只要以逗号或分号将命令隔开:
x = sin(pi/3); y = x^2; z = y*10,
z =
7.5000
若一个数学运算是太长,可用三个句点将其延伸到下一行:
z = 10*sin(pi/3)* ...
sin(pi/3);
若要检视现存於工作空间(Workspace)的变数,可键入who:
who
Your variables are:
testfile x
这些是由使用者定义的变数。若要知道这些变数的详细资料,可键入:
whos
Name Size Bytes Class
A 2x4 64 double array
B 4x2 64 double array
ans 1x1 8 double array
x 1x1 8 double array
y 1x1 8 double array
z 1x1 8 double array
Grand total is 20 elements using 160 bytes
使用clear可以删除工作空间的变数:
clear A
A
??? Undefined function or variable 'A'.
另外MATLAB有些永久常数(Permanent constants),虽然在工作空间中看不 到,但使用者可直接取用,例如:
pi
ans = 3.1416
下表即为MATLAB常用到的永久常数。
小整理:MATLAB的永久常数 i或j:基本虚数单位
eps:系统的浮点(Floating-point)精确度
inf:无限大, 例如1/0 nan或NaN:非数值(Not a number) ,例如0/0
pi:圆周率 p(= 3.1415926...)
realmax:系统所能表示的最大数值
realmin:系统所能表示的最小数值
nargin: 函数的输入引数个数
nargin: 函数的输出引数个数
1-2、重复命令
最简单的重复命令是for
作者:
jetzt
时间:
2004-2-3 04:14
标题:
2.数值分析
2.1微分
diff函数用以演算一函数的微分项,相关的函数语法有下列4个:
diff(f) 传回f对预设独立变数的一次微分值
diff(f,'t') 传回f对独立变数t的一次微分值
diff(f,n) 传回f对预设独立变数的n次微分值
diff(f,'t',n) 传回f对独立变数t的n次微分值
数值微分函数也是用diff,因此这个函数是靠输入的引数决定是以数值或是符号微分,如果引数为向量则执行数值微分,如果引数为符号表示式则执行符号微分。
先定义下列三个方程式,接著再演算其微分项:
>>S1 = '6*x^3-4*x^2+b*x-5';
>>S2 = 'sin(a)';
>>S3 = '(1 - t^3)/(1 + t^4)';
>>diff(S1)
ans=18*x^2-8*x+b
>>diff(S1,2)
ans= 36*x-8
>>diff(S1,'b')
ans= x
>>diff(S2)
ans=
cos(a)
>>diff(S3)
ans=-3*t^2/(1+t^4)-4*(1-t^3)/(1+t^4)^2*t^3
>>simplify(diff(S3))
ans= t^2*(-3+t^4-4*t)/(1+t^4)^2
2.2积分
int函数用以演算一函数的积分项, 这个函数要找出一符号式 F 使得diff(F)=f。如果积
分式的解析式 (analytical form, closed form) 不存在的话或是MATLAB无法找到,则int 传回原输入的符号式。相关的函数语法有下列 4个:
int(f) 传回f对预设独立变数的积分值
int(f,'t') 传回f对独立变数t的积分值
int(f,a,b) 传回f对预设独立变数的积分值,积分区间为[a,b],a和b为数值式
int(f,'t',a,b) 传回f对独立变数t的积分值,积分区间为[a,b],a和b为数值式
int(f,'m','n') 传回f对预设变数的积分值,积分区间为[m,n],m和n为符号式
我们示范几个例子:
>>S1 = '6*x^3-4*x^2+b*x-5';
>>S2 = 'sin(a)';
>>S3 = 'sqrt(x)';
>>int(S1)
ans= 3/2*x^4-4/3*x^3+1/2*b*x^2-5*x
>>int(S2)
ans= -cos(a)
>>int(S3)
ans= 2/3*x^(3/2)
>>int(S3,'a','b')
ans= 2/3*b^(3/2)- 2/3*a^(3/2)
>>int(S3,0.5,0.6)
ans= 2/25*15^(1/2)-1/6*2^(1/2)
>>numeric(int(S3,0.5,0.6)) % 使用numeric函数可以计算积分的数值
ans= 0.0741
2.3求解常微分方程式
MATLAB解常微分方程式的语法是dsolve('equation','condition'),其中equation代表常微分方程式即y'=g(x,y),且须以Dy代表一阶微分项y' D2y代表二阶微分项y'' ,
condition则为初始条件。
假设有以下三个一阶常微分方程式和其初始条件
y'=3x2, y(2)=0.5
y'=2.x.cos(y)2, y(0)=0.25
y'=3y+exp(2x), y(0)=3
对应上述常微分方程式的符号运算式为:
>>soln_1 = dsolve('Dy = 3*x^2','y(2)=0.5')
ans= x^3-7.500000000000000
>>ezplot(soln_1,[2,4]) % 看看这个函数的长相
>>soln_2 = dsolve('Dy = 2*x*cos(y)^2','y(0) = pi/4')
ans= atan(x^2+1)
>>soln_3 = dsolve('Dy = 3*y + exp(2*x)',' y(0) = 3')
ans= -exp(2*x)+4*exp(3*x)
2.4非线性方程式的实根
要求任一方程式的根有三步骤:
先定义方程式。要注意必须将方程式安排成 f(x)=0 的形态,例如一方程式为sin(x)=3,
则该方程式应表示为 f(x)=sin(x)-3。可以 m-file 定义方程式。
代入适当范围的 x, y(x) 值,将该函数的分布图画出,藉以了解该方程式的「长相」。
由图中决定y(x)在何处附近(x0)与 x 轴相交,以fzero的语法fzero('function',x0) 即可求出在 x0附近的根,其中 function 是先前已定义的函数名称。如果从函数分布图看出根不只一个,则须再代入另一个在根附近的 x0,再求出下一个根。
以下分别介绍几数个方程式,来说明如何求解它们的根。
例一、方程式为
sin(x)=0
我们知道上式的根有 ,求根方式如下:
>> r=fzero('sin',3) % 因为sin(x)是内建函数,其名称为sin,因此无须定义它,选择 x=3 附近求根
r=3.1416
>> r=fzero('sin',6) % 选择 x=6 附近求根
r = 6.2832
例二、方程式为MATLAB 内建函数 humps,我们不须要知道这个方程式的形态为何,不过我们可以将它划出来,再找出根的位置。求根方式如下:
>> x=linspace(-2,3);
>> y=humps(x);
>> plot(x,y), grid % 由图中可看出在0和1附近有二个根
>> r=fzero('humps',1.2)
r = 1.2995
例三、方程式为y=x.^3-2*x-5
这个方程式其实是个多项式,我们说明除了用 roots 函数找出它的根外,也可以用这节介绍的方法求根,注意二者的解法及结果有所不同。求根方式如下:
% m-function, f_1.m
function y=f_1(x) % 定义 f_1.m 函数
y=x.^3-2*x-5;
>> x=linspace(-2,3);
>> y=f_1(x);
>> plot(x,y), grid % 由图中可看出在2和-1附近有二个根
[ Last edited by jetzt on 2004-2-3 at 04:16 ]
作者:
jetzt
时间:
2004-2-3 04:16
>> r=fzero('f_1',2); % 决定在2附近的根
r = 2.0946
>> p=[1 0 -2 -5]
>> r=roots(p) % 以求解多项式根方式验证
r =
2.0946
-1.0473 + 1.1359i
-1.0473 - 1.1359i
2.5线性代数方程(组)求解
我们习惯将上组方程式以矩阵方式表示如下
AX=B
其中 A 为等式左边各方程式的系数项,X 为欲求解的未知项,B 代表等式右边之已知项
要解上述的联立方程式,我们可以利用矩阵左除 做运算,即是 X=AB。
如果将原方程式改写成 XA=B
其中 A 为等式左边各方程式的系数项,X 为欲求解的未知项,B 代表等式右边之已知项
注意上式的 X, B 已改写成列向量,A其实是前一个方程式中 A 的转置矩阵。上式的 X 可以矩阵右除 / 求解,即是 X=B/A。
若以反矩阵运算求解 AX=B, X=B,即是 X=inv(A)*B,或是改写成 XA=B, X=B,即是X=B*inv(A)。
我们直接以下面的例子来说明这三个运算的用法:
>> A=[3 2 -1; -1 3 2; 1 -1 -1]; % 将等式的左边系数键入
>> B=[10 5 -1]'; % 将等式右边之已知项键入,B要做转置
>> X=AB % 先以左除运算求解
X = % 注意X为行向量
-2
5
6
>> C=A*X % 验算解是否正确
C = % C=B
10
5
-1
>> A=A'; % 将A先做转置
>> B=[10 5 -1];
>> X=B/A % 以右除运算求解的结果亦同
X = % 注意X为列向量
10 5 -1
>> X=B*inv(A); % 也可以反矩阵运算求解
作者:
jetzt
时间:
2004-2-3 04:19
标题:
3.基本xy平面绘图命令
MATLAB不但擅长於矩阵相关的数值运算,也适合用在各种科学目视表示(Scientific visualization)。
本节将介绍MATLAB基本xy平面及xyz空间的各项绘图命令,包含一维曲线及二维曲面的绘制、列印及存档。
plot是绘制一维曲线的基本函数,但在使用此函数之前,我们需先定义曲线上每一点的x 及y座标。
下例可画出一条正弦曲线:
close all;
x=linspace(0, 2*pi, 100); % 100个点的x座标
y=sin(x); % 对应的y座标
plot(x,y);
作者:
jetzt
时间:
2004-2-3 04:20
小整理:MATLAB基本绘图函数
plot: x轴和y轴均为线性刻度(Linear scale)
loglog: x轴和y轴均为对数刻度(Logarithmic scale)
semilogx: x轴为对数刻度,y轴为线性刻度
semilogy: x轴为线性刻度,y轴为对数刻度
若要画出多条曲线,只需将座标对依次放入plot函数即可:
plot(x, sin(x), x, cos(x));
作者:
jetzt
时间:
2004-2-3 04:22
若要改变颜色,在座标对後面加上相关字串即可:
plot(x, sin(x), 'c', x, cos(x), 'g');
作者:
jetzt
时间:
2004-2-3 04:23
若要同时改变颜色及图线型态(Line style),也是在座标对後面加上相关字串即可:
plot(x, sin(x), 'co', x, cos(x), 'g*');
作者:
jetzt
时间:
2004-2-3 04:25
小整理:plot绘图函数的叁数 字元 颜色字元 图线型态y 黄色. 点k 黑色o 圆w 白色x xb 蓝色+ +g 绿色* *r 红色- 实线c 亮青色: 点线m 锰紫色-. 点虚线-- 虚线
图形完成後,我们可用axis([xmin,xmax,ymin,ymax])函数来调整图轴的范围:
axis([0, 6, -1.2, 1.2]);
作者:
jetzt
时间:
2004-2-3 04:25
此外,MATLAB也可对图形加上各种注解与处理:
xlabel('Input Value'); % x轴注解
ylabel('Function Value'); % y轴注解
title('Two Trigonometric Functions'); % 图形标题
legend('y = sin(x)','y = cos(x)'); % 图形注解
grid on; % 显示格线
作者:
jetzt
时间:
2004-2-3 04:26
我们可用subplot来同时画出数个小图形於同一个视窗之中:
subplot(2,2,1); plot(x, sin(x));
subplot(2,2,2); plot(x, cos(x));
subplot(2,2,3); plot(x, sinh(x));
subplot(2,2,4); plot(x, cosh(x));
作者:
jetzt
时间:
2004-2-3 04:30
标题:
4.三维网图的高级处理
1. 消隐处理
例.比较网图消隐前后的图形
z=peaks(50);
subplot(2,1,1);
mesh(z);
title('消隐前的网图')
hidden off
subplot(2,1,2)
mesh(z);
title('消隐后的网图')
hidden on
colormap([0 0 1])
作者:
jetzt
时间:
2004-2-3 04:31
2. 裁剪处理
利用不定数NaN的特点,可以对网图进行裁剪处理
例.图形裁剪处理
P=peaks(30);
subplot(2,1,1);
mesh(P);
title('裁剪前的网图')
subplot(2,1,2);
P(20:23,9:15)=NaN*ones(4,7); %剪孔
meshz(P) %垂帘网线图
title('裁剪后的网图')
colormap([0 0 1]) %蓝色网线
注意裁剪时矩阵的对应关系,即大小一定要相同.
作者:
jetzt
时间:
2004-2-3 04:32
3. 三维旋转体的绘制
为了一些专业用户可以更方便地绘制出三维旋转体,MATLAB专门提供了2个函数:柱面函数cylinder和球面函数sphere
(1) 柱面图
柱面图绘制由函数cylinder实现.
[X,Y,Z]=cylinder(R,N) 此函数以母线向量R生成单位柱面.母线向量R是在单位高度里等分刻度上定义的半径向量.N为旋转圆周上的分格线的条数.可以用surf(X,Y,Z)来表示此柱面.
[X,Y,Z]=cylinder(R)或[X,Y,Z]=cylinder此形式为默认N=20且R=[1 1]
例.柱面函数演示举例
x=0:pi/20:pi*3;
r=5+cos(x);
[a,b,c]=cylinder(r,30);
mesh(a,b,c)
作者:
jetzt
时间:
2004-2-3 04:34
例.旋转柱面图.
r=abs(exp(-0.25*t).*sin(t));
t=0:pi/12:3*pi;
r=abs(exp(-0.25*t).*sin(t));
[X,Y,Z]=cylinder(r,30);
mesh(X,Y,Z)
colormap([1 0 0])
作者:
jetzt
时间:
2004-2-3 04:35
(2).球面图
球面图绘制由函数sphere来实现
[X,Y,Z]=sphere(N) 此函数生成3个(N+1)*(N+1)的矩阵,利用函数 surf(X,Y,Z) 可产生单位球面.
[X,Y,Z]=sphere 此形式使用了默认值N=20.
Sphere(N) 只是绘制了球面图而不返回任何值.
例.绘制地球表面的气温分布示意图.
[a,b,c]=sphere(40);
t=abs(c);
surf(a,b,c,t);
axis('equal') %此两句控制坐标轴的大小相同.
axis('square')
colormap('hot')
作者:
Pirate-shif
时间:
2004-2-3 16:12
标题:
佩服!
佩服!楼主!
向楼主请教一个小问题:象我这种数学知识差不多已忘光了的(大学时当然学过高数和线性规划和矩阵),能不能运用MATLAB?
作者:
jetzt
时间:
2004-2-3 17:41
其实学过的东西,只要花几天时间复习一下,就能捡回来。
作者:
冬鱼的快乐
时间:
2004-4-13 07:31
yes.gifyes.gifyes.gifyes.gif14.gif14.gif14.gif
[ Last edited by 冬鱼的快乐 on 2004-4-21 at 10:51 ]
作者:
oasisangel
时间:
2004-4-24 00:42
楼主对SIMULINK懂么?
作者:
小丸子MM
时间:
2004-11-14 10:26
现在怎么图片都看不了了?全是叉子。请问哪能下到matlap6。0或者5点多的版本也行。谢谢了。
作者:
chenguanzhong
时间:
2005-1-10 17:01
标题:
Ding Yi xia
作者:
laopo
时间:
2005-1-10 17:03
matlab和maple有什么优劣呢?
作者:
栩如
时间:
2005-1-10 21:11
1.5考过。。。。感觉满烦的tired.gif
作者:
会员18888
时间:
2005-3-24 00:12
好东东,收藏!
欢迎光临 人在德国 社区 (http://csuchen.de/bbs/)
Powered by Discuz! 7.2